[ Quellcode: debian-science ]
Paket: science-machine-learning (1.10)
Links für science-machine-learning
Debian-Ressourcen:
Quellcode-Paket debian-science herunterladen:
Betreuer:
Externe Ressourcen:
- Homepage [wiki.debian.org]
Ähnliche Pakete:
Debian Science Machine Learning packages
This metapackage will install packages useful for machine learning. Included packages range from knowledge-based (expert) inference systems to software implementing the advanced statistical methods that currently dominate the field.
Andere Pakete mit Bezug zu science-machine-learning
|
|
|
|
-
- dep: science-config (= 1.10)
- Debian Science - Konfigurationspaket
-
- dep: science-tasks (= 1.10)
- Debian Science tasks for tasksel
-
- rec: autoclass
- Automatische Klassifikation bzw. Clustering
-
- rec: caffe-cpu
- Fast, open framework for Deep Learning (Meta)
-
- rec: libfann-dev
- Development libraries and header files for FANN
-
- rec: libga-dev
- C++ Library of Genetic Algorithm Components
-
- rec: liblinear-dev
- Entwicklungsbibliotheken und Header-Dateien für LIBLINEAR
-
- rec: libmlpack-dev
- intuitive, fast, scalable C++ machine learning library (development libs)
-
- rec: libocas-dev
- Development libraries and header files for LIBOCAS
-
- rec: libshogun-dev
- Large Scale Machine Learning Toolbox
-
- rec: libsvm-dev
- Bibliothek zur Implementierung von Support Vector Machines - Header-Dateien
-
- rec: libtorch3-dev
- State of the art machine learning library - development files
-
- rec: libvigraimpex-dev
- development files for the C++ computer vision library
-
- rec: lua-torch-graph
- Graph Computation Package for Torch Framework
-
- rec: lua-torch-image
- Image Load/Save Library for Torch Framework
-
- rec: lua-torch-nn
- Neural Network Package for Torch Framework
-
- rec: lua-torch-nngraph
- Neural Network Graph Package for Torch Framework
-
- rec: lua-torch-optim
- Numeric Optimization Package for Torch Framework
-
- rec: lua-torch-trepl
- REPL Package for Torch Framework
-
- rec: lua-torch-xlua
- Lua Extension Package for Torch Framework
-
- rec: mcl
- Markov-Cluster-Algorithmus
-
- rec: octave-ga
- genetic optimization code for Octave
-
- rec: python-genetic
- genetic algorithms in Python
-
- rec: python-opencv
- Python-Anbindungen für die OpenCV-Bibliothek
-
- rec: python-pebl
- Python Environment for Bayesian Learning
-
- rec: python-statsmodels
- Python module for the estimation of statistical models
-
- rec: python-vigra
- Python bindings for the C++ computer vision library
-
- rec: python3-amp
- Atomistic Machine-learning Package (python 3)
-
- rec: python3-keras
- deep learning framework running on Theano or TensorFlow
-
- rec: python3-lasagne
- deep learning library build on the top of Theano (Python3 modules)
-
- rec: python3-sklearn
- Python modules for machine learning and data mining - Python 3
-
- rec: python3-thinc
- Practical Machine Learning for NLP in Python
-
- rec: r-cran-amore
- GNU R: ein NOCH flexibleres Paket für Neuronale Netze
-
- rec: r-cran-bayesm
- GNU-R-Paket für Bayessche Statistik
-
- rec: r-cran-class
- GNU-R-Paket zur Klassifizierung
-
- rec: r-cran-cluster
- GNU-R-Paket zur Cluster-Analyse von Rousseeuw et al
-
- rec: r-cran-gbm
- GNU R package providing Generalized Boosted Regression Models
-
- rec: r-cran-mass
- GNU-R-Paket für MASS von Venables und Ripley
-
- rec: r-cran-mcmcpack
- R routines for Markov chain Monte Carlo model estimation
-
- rec: r-cran-metrics
- GNU R evaluation metrics for machine learning
-
- rec: r-cran-mlbench
- GNU R Machine Learning Benchmark Problems
-
- rec: r-cran-mlr
- Machine learning in GNU R
-
- rec: r-cran-mnp
- GNU R package for fitting multinomial probit (MNP) models
-
- rec: r-cran-msm
- »GNU R«-Modelle Multi-State Markov und Hidden Markov in kontinuierlicher Zeit
-
- rec: r-cran-tgp
- GNU R Bayesian treed Gaussian process models
-
- rec: torch-core-free
- Scientific Computing Framework For Luajit (Core Components)
-
- rec: toulbar2
- Exact combinatorial optimization for Graphical Models
-
- rec: weka
- Machine learning algorithms for data mining tasks
-
- sug: ask
- Adaptive Sampling Kit for big experimental spaces
-
- sug: caffe-cuda
- Fast, open framework for Deep Learning (Meta)
-
- sug: flann
- Paket nicht verfügbar
-
- sug: gprolog
- Paket nicht verfügbar
-
- sug: libacovea-dev
- Paket nicht verfügbar
-
- sug: libcomplearn-dev
- Paket nicht verfügbar
-
- sug: libcv-dev
- Paket nicht verfügbar
-
- sug: libdlib-dev
- C++ toolkit for machine learning and computer vision - development
-
- sug: libevocosm-dev
- Paket nicht verfügbar
-
- sug: libfclib-dev
- read and write problems from the Friction Contact Library (headers)
-
- sug: libmkldnn-dev
- Intel Math Kernel Library for Deep Neural Networks (dev)
-
- sug: libqsearch-dev
- Paket nicht verfügbar
-
- sug: libroot-math-mlp-dev
- Paket nicht verfügbar
-
- sug: libroot-montecarlo-vmc-dev
- Paket nicht verfügbar
-
- sug: libroot-tmva-dev
- Paket nicht verfügbar
-
- sug: libshark-dev
- Paket nicht verfügbar
-
- sug: libxsmm-dev
- Paket nicht verfügbar
-
- sug: pgapack
- Paket nicht verfügbar
-
- sug: pybrain
- Paket nicht verfügbar
-
- sug: python-mdp
- Paket nicht verfügbar
-
- sug: python-mlpy
- Paket nicht verfügbar
-
- sug: python-mvpa2
- Paket nicht verfügbar
-
- sug: python-orange
- Paket nicht verfügbar
-
- sug: python-pyevolve
- Paket nicht verfügbar
-
- sug: python-pymc
- Paket nicht verfügbar
-
- sug: python3-hdmedians
- high-dimensional medians in Python3
-
- sug: root-system
- Paket nicht verfügbar
-
- sug: science-numericalcomputation
- Debian Science - Pakete für numerische Berechnungen
-
- sug: science-statistics
- »Debian Science« Statistik-Pakete
-
- sug: science-typesetting
- Debian Science: Pakete für den Schriftsatz
-
- sug: scilab-ann
- Paket nicht verfügbar
-
- sug: spacy
- Paket nicht verfügbar
-
- sug: vowpal-wabbit
- Paket nicht verfügbar
-
- sug: yap
- Paket nicht verfügbar
science-machine-learning herunterladen
Architektur | Paketgröße | Größe (installiert) | Dateien |
---|---|---|---|
all | 18,3 kB | 38,0 kB | [Liste der Dateien] |