[ Bron: pycuda ]
Pakket: python-pycuda-doc (2024.1.2~dfsg-1) [contrib]
Verwijzigingen voor python-pycuda-doc
Debian bronnen:
Het bronpakket pycuda downloaden:
- [pycuda_2024.1.2~dfsg-1.dsc]
- [pycuda_2024.1.2~dfsg.orig.tar.xz]
- [pycuda_2024.1.2~dfsg-1.debian.tar.xz]
Beheerders:
- Debian NVIDIA Maintainers (QA-pagina, Mailarchief)
- Tomasz Rybak (QA-pagina)
- Andreas Beckmann (QA-pagina)
Externe bronnen:
- Homepage [mathema.tician.de]
Vergelijkbare pakketten:
module to access Nvidia‘s CUDA computation API (documentation)
PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA?
* Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation.
This package contains HTML documentation and example scripts.
Andere aan python-pycuda-doc gerelateerde pakketten
|
|
|
|
-
- dep: fonts-mathjax
- JavaScript display engine for LaTeX and MathML (fonts)
-
- dep: libjs-mathjax
- JavaScript display engine for LaTeX and MathML
-
- dep: libjs-sphinxdoc (>= 7.4)
- JavaScript support for Sphinx documentation
-
- rec: nvidia-cuda-doc
- Pakket niet beschikbaar
-
- rec: python-mako-doc
- documentation for the Mako Python library
-
- rec: python3-doc
- documentation for the high-level object-oriented language Python 3
-
- sug: python3-pycuda
- Python 3 module to access Nvidia‘s CUDA parallel computation API